DOI: http://dx.doi.org/10.18782/2320-7051.2572

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5** (1): 310-319 (2017)

Impact of Organic, Inorganic and Bio-Fertilizers with Different Spacing on Vegetative Growth and Yield of Guava (cv. Lalit) During Summer Season

R. Kiran Kumar^a, S. Jaganath^b, and T. R. Guruprasad^c

^{a,b & c}Department of Fruit Science, College of Horticulture, UHS Campus, Bengaluru-560065, Karnataka, India *Corresponding Author E-mail: kiraneyas@gmail.com

Received: 9.02.2017 | Revised: 15.02.2017 | Accepted: 18.02.2017

ABSTRACT

The Field investigations were carried out know the effect of organic, inorganic and bio-fertilizers on growth and yield of guava (Psidium guajava L.) cv. Lalit was carried out at Regional Horticulture Research Station, College of Horticulture, Bengaluru. The vegetative growth and yield was significantly influenced at different spacing levels (2 x 2, 3 x 3, 6 x 3 and 6 x 6 m). In summer season the maximum plant height (2.81 m), plant spread (N-S direction) (2.85 m), plant spread (E-W direction) (2.69 m) and canopy volume (11.76 m^3) were found in 6 x 6 m spacing. Whereas, the maximum leaf area (58.13 m^2) and total chlorophyll content (2.19 mg 100 g⁻¹ FW) were found in 2 x 2 m spacing. Integrated nutrient management significantly influenced vegetative growth characteristics after 8 month of growth stage the maximum plant height (2.81 m), plant spread (N-S direction) (2.74 m), plant spread (E-W direction) (2.67 m) and canopy volume (11.71 m^3) in 6 x 6 m spacing and the (2 x 2 m) spacing records, the maximum leaf area (59.12 m²) and total chlorophyll content (2.53 mg 100 g⁻¹ FW) were maximum in (T_{10}) Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK. The yield was significant among the different spacing of summer season. The 6 x 6 m spacing records the maximum number of fruits (171.74), fruit yield (12.63 kg tree⁻¹). Integrated nutrient management of (T_{10}) Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK wangle the maximum number of fruits (236.06), fruit yield (15.71 kg tree⁻¹).

Key words: Organic, Inorganic, Bio-Fertilizers, Guava, Pruning, Summer, Lalit, Spacing

INTRODUCTION

Guava (*Psidium guajava* L.) is a popular fruit crop in India. It belongs to the family Myrtaceae. It can be grown in tropical and subtropical climate and it adapted for diverse soil and agro climatic conditions. It is relatively precocious and prolific in fruit bearing nature, could gives highly remunerative for crop production. The fruits are highly nutritious, it has a rich source of vitamin 'C' after barbados cherry (1500 mg 100^{-1} g) and aonla (700 mg 100^{-1} g) and Vitamin 'C' content of fruits vary from 95.75 to 239.00 mg 100^{-1} g cultivars of guava¹. Guava is the fifth important fruit crop after banana, mango, citrus and papaya with an area of 268 thousand hectares contribute to total annual production of 3668 million tons and with productivity of 13.70 million tons per hectare².

Cite this article: Kumar, R.K., Jaganath, S. and Guruprasad, T.R., Impact of Organic, Inorganic and Bio-Fertilizers with Different Spacing on Vegetative Growth and Yield of Guava (cv. Lalit) During Summer Season, *Int. J. Pure App. Biosci.* **5(1):** 310-319 (2017). doi: http://dx.doi.org/10.18782/2320-7051.2572

ISSN: 2320 - 7051

Among other fruit crops, guava essentially requires nutrients for its growth and production. It gives good response for manures and fertilization for better crop production. A minimum or poor application of nutrients seems to be declining in growth and yield of a tree. Considering the above facts in view, the integrated approach of organic, inorganic and bio-fertilizers were used to know the effect on vegetative growth and its impact on yield parameters of cv. Lalit in summer season.

MATERIAL AND METHODS

The present research was carried out at the Regional Horticultural Research Experimental Centre (RHREC), UHS, Campus, Bengaluru during the year 2012-13 and 2013-14 and the research was conducted on three year old guava trees. experiment was conducted on four different plant densities included, (2 x 2 m, 3 x 3 m, 6 x 3 m and 6 x 6 m. The treatment aggregates of T_1 : FYM (10 kg) + recommended NPK (50:25:75 g plant⁻¹), T₂: Vermicompost (10 kg) + recommended NPK, T_3 : FYM (5 kg) + vermicompost (5 kg) + recommended NPK, T₄: FYM (10 kg) + vermicompost (10 kg) + 50% recommended NPK, T₅: Azotobacter (20 g) + FYM (10 kg) + 50% recommended NPK, T₆: Azotobacter (20 vermicompost (10 kg) + 50%g) + recommended NPK, T₇: PSB (20 g) + FYM (10 kg) + 50% recommended NPK, T₈: PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK, T₉: Azotobacter (20 g) + PSB (20 g) + FYM (10 kg) + 50% recommended NPK, T₁₀: Azotobacter (20 g) + PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK. The bio-fertilizers were procured from Department of Microbiology, UAS, Bengaluru. The experiment was statistically carried out by split plot design with ten treatments replicated thrice with two trees per replication. The observations recorded for vegetative growth, plant height (m) and plant spread (N-S & E-W), Canopy volume was calculated by using formula³.

 $V = \frac{4}{6}\pi hr^2$ where, $\pi - 2.14$, h- Height of tree (m), $r = \frac{\text{Sum of E-W and N-S directions (m)}}{4}$

Leaf area, total chlorophyll content of leaf, number of fruits, fruit yield per tree, pruned shoots were weighed to know the biomass data were statistically production. The analyzed by adopting standard procedures and interpreted using analysis of variance.

RESULTS AND DISCUSSION

The plant height was recorded in different densities like S_1 (2 x 2 m), S_2 (3 x 3 m), S_3 (6 x 3 m) and S_4 (6 x 6 m) of summer (2014) at initial days among the different density the maximum plant height (2.58 m) recorded in 6 x 6 m which was significant over all other spacing 6 x 3 m (2.52 m), 3 x 3 m recorded (2.29 m) and 2 x 2 m (1.76 m), and after 8 months of growth period plant height (3.07 m) recorded in 6 x 6 m which was significant over all other spacing 6 x 3 m (3.00 m), 3 x 3 m recorded (2.73 m) and 2 x 2 m (2.09 m) and the integrated nutrient management method also proves that, the plants treated with T_{10} (Azotobacter @ 20 g + PSB @ 20 g + Copyright © February, 2017; IJPAB

vermicompost @ 10 kg + 50 % recommended NPK) shows highest plant height at initial days and after 8 months (2.44 & 2.90 m respectively). The plant spread was significantly higher (N-S and E-W) was observed in unprunned treatment (6 x 6 m) than all other high density spacing (2 x 2 m), (3 x 3 m), (6 x 3 m). The maximum spread (N-S) of plant at initial days 2 x 2 m (1.53 m), 3 x 3 m (1.88 m) shows significant differences with each other but 6 x 3 m (2.31 m) was on par with 6 x 6 m (2.36 m) and after 8 months of growth period 2 x 2 m (1.82 m), 3 x 3 m (2.24 m) shows significant differences with each other but 6 x 3 m (2.75 m) was on par with $6 \times 6 \text{ m}$ (2.81 m). Where, by the application of organic and inorganic with biosignificantly fertilizers sources were influenced on plant spread (N-S) (2.19 and 2.60 m) was observed at initial days and at 8 months respectively. Similar trend was followed in the East-West spread plant spread where, the significantly maximum spread was

observed in unpruned spacing S_4 (6 x 6 m) (2.39 m) which was on par with 6 x 3 m (2.32 m)m) but with other spacing $2 \times 2 \text{ m}$ (1.58 m) and 3 x 3 m (1.86 m) it shows significant differences were observed at initial days of growth period and the same trend was followed at 8 months growth stage S_4 (6 x 6 m) (2.84 m) which was on par with 6 x 3 m (2.76 m) but with other spacing 2 x 2 m (1.88 m)m) and 3 x 3 m (2.22 m) it shows significant results. Whereas, in integrated management studies, the maximum spread was observed in T₁₀ (Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK) (2.18 m and 2.60 m) at initial days and after 8th month of growth period. The maximum canopy volume was observed at (S_4) $6 \times 6 \text{ m} (7.60 \text{ m}^3)$ which was on par with 6×3 m (7.38 m^3) but it was significant with 3 x 3 m (4.34 m^3) and 2 x 2 m (2.25 m^3) at initial days and after at 8^{th} month (S₄) 6 x 6 m (12.84 m³) which was on par with $6 \times 3 \text{ m} (12.47 \text{ m}^3)$ but it was significant with 3 x 3 m (7.33 m^3) and 2 x 2 m (3.80 m³) was observed. Further, T_{10} comprises with Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK had maximum canopy volume (6.53 m³ and 11.03 m³ respective interval of growth stage) compared to T_9 (Azotobacter @ 20 g + PSB @ 20 g + FYM @ 10 kg + 50 % recommended NPK) (6.16 and 10.41 m³ respectively) (Table 1 & 2).

The leaf area of a plant was influenced by the different spacing 2 x 2 m spaced plants shows the maximum leaf area (43.24 m^2) among all other densities, apart from the spacing treatment the integrated nutrient management resulted maximum leaf area (49.93 m^2) observed in T₁₀ (Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK. Maximum total chlorophyll content of the leaves was recorded significantly more in closer spaced (2 x 2 m) plots (2.23 mg 100 g⁻¹ fresh weight). By the application of organic, inorganic and biofertilizers, the synthesis of total chlorophyll content of leaves was maximum in the treatment T₁₀ (Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK) (2.55 mg 100 g⁻¹ fresh

weight) in the summer season. The weight of pruned material was gives the additional information of plant growth in pruned trees. The significant differences were observed during summer season, the maximum weight the maximum (4.86 kg) pruned shoots weight recorded in closer spacing (2 x 2 m) and the fertilizer studies shows that the collective weight of pruned shoots was highest (4.55 kg) by the application of T_{10} (Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK) (Table 3). The maximum number of fruits (166.25) was in summer season under wider spaced $(6 \times 6 \text{ m})$ plots. By the application of organic, inorganic and bio-fertilizers, the number of fruits was maximum (228.52) in the treatment T_{10} (Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK) and the maximum fruit yield per tree in the higher fruit yield per tree was recorded under $(6 \times 6 \text{ m})$ spacing with the yield about $(10.81 \text{ kg tree}^{-1})$. The adaptation of integrated nutrient management gives the maximum fruit yield (13.44 kg tree⁻¹) in the treatment (T_{10}) Azotobacter @ 20 g + PSB @ 20 g + vermicompost @ 10 kg + 50 % recommended NPK (Table 4).

The results of present study reveals the variations in plant height is may be due to the regular pruning was undertaken as a common practice for all high density treatment except the wider spaced plot. Thus, more or less similar dwarf plant height was observed in the entire high density plot. On the other side, the highest plant was observed in wider spacing plot. S_4 (6 x 6 m) plant growth was not restricted by adopting pruning. These results were confirmed by earlier reports of guava high density studies reported that a spacing of 6 x 6 m resulted the maximum tree height as compared to 6 x 4 and 6 x 5 m spacing⁴. The high density was coupled with the regular pruning however, some studies without pruning were recorded height of the plant was increased in the plant densities or closer spacing, and these increment in height of plant in these research find outs was mainly due to the fact that sunlight competition among the unprunned high density plants grows

ISSN: 2320 - 7051

vertically^{5,6,7&8}. The better efficiency of organic manures in combination with inorganic fertilizers might be due to the fact that organic manures would have provided the micronutrients such as zinc, iron, copper, manganese, etc., in an optimum level. These findings were supported by following scientists, the application of organic manures would have helped in the plant metabolism through the supply of such important micronutrients in the early growth phase⁹.

The better efficiency of organic manures in combination with inorganic fertilizers might be due to the fact that organic manures would have provided the micronutrients such as zinc, iron, copper, manganese, etc., in an optimum level. These findings were supported by following scientists, the application of organic manures would have helped in the plant metabolism through the supply of such important micronutrients in the early growth phase¹⁰. The maximum plant spread was noticed in 6 x 6 m spacing. Improvement of crop growth was influenced by Azotobacter, the microbial inoculants, which bring about fixation of atmospheric nitrogen through free-living N₂ fixers in rhizosphere. The results of present study accordance were observed the vegetative growth of guava was improved by the application of different fertilizers, organic manure and bio-fertilizers¹¹. The increasing of canopy volume might be due to the better nutritional environment, application of organic matter improve the soil health by improving physicochemical and biological activities of soil¹². The favorable effect of vermicompost on vegetative growth might be due to the fact that in addition to improving the various aspects of soil systems (physico-chemical and biological), it also alters various enzymatic activities in plants such as peroxidase, catalase etc, which promotes cell elongation, root and shoot growth and carbohydrate metabolism¹³. The productivity of any crop depends on the process of photosynthesis, which in turn depends on the chlorophyll content of leaves in plants and the magnesium is an important constituent of chlorophyll. They help in activation of many enzymes involved in photosynthesis their by, helps in uptake and translocation of sugar in the plant. Similarly, nitrate reductase enzyme is known to be involved in assimilation of nitrogen¹⁴. The maximum growth increment was obtained by the application of full dose of NPK with bioincoulants followed by 75 % NPK with bioincoulants and vermicompost, it might be due to profuse supply of nutrients along with production of growth promoting hormones by bio-fertilizers and vermicompost¹⁵. The total chlorophyll content and photosynthetic rate of leaves were positively correlated with leaf N content¹⁶.

The integrated use of organic manures bio-fertilizers along with chemical and fertilizers improves physico-chemical properties of soil besides improving the efficiency of applied chemical fertilizers which helps in the betterment of yield and its components¹⁷. The other bio-fertilizers encouraged better growth and accumulate optimum dry matter with induction of growth hormones, which stimulated cell division, cell elongation, activate the photosynthesis process, similar findings were reported in guava^{18,19,20&21}. The 50 percent pruning in May produced the highest yield (25.8 kg tree⁻¹) than unpruned (7.6 kg tree⁻¹) in winter crop of guava cv. 'Sardar'²². The results of long-term fertilizer experiments suggested that neither organic manures alone nor exclusive application of chemical fertilizers could achieve the yield sustainability at a high order under modern farming where the nutrient turnover in the soil plant system is quite high²³. A significant increase in yield and yield parameters in guava with integrated nutrient application may be due to vigorous vegetative growth and increased chlorophyll content, which together accelerated the photosynthetic rate and thereby increased the supply of carbohydrates to plants. The beneficial role of supplemented organic manures and biofertilizers in improving soil physical, chemical and biological role is well known, which in turn helps in better nutrient absorption by plants and resulting higher yield²⁴.

Int. J. Pure App. Biosci. 5 (1): 310-319 (2017)

Table 1: Influence of planting	g density and integ	grated nutrient management on	plant height (m) and pla	ant spread (N-S dire	ection) (m) of guava cv. Lalit
1 6				L \	

	Summer season (2014)																			
	Plant height (m)											Plant spread (N-S)								
Trastmonts		Initia	l days		Moon	After 8 months			Maan		Initia	l days		- Moon	After 8 months				Maan	
Treatments	S_1	S_2	S_3	S_4	Mean	S_1	S_2	S_3	S_4	Mean	\mathbf{S}_1	S_2	S_3	S_4	Mean	S_1	S_2	S_3	S_4	Weall
T_1	1.30	2.09	2.40	2.45	2.06	1.55	2.49	2.86	2.92	2.46	1.43	1.65	2.19	2.19	1.87	1.70	1.97	2.61	2.61	2.22
T_2	1.67	2.09	2.45	2.47	2.17	1.99	2.49	2.92	2.95	2.59	1.46	1.66	2.21	2.25	1.89	1.73	1.97	2.63	2.68	2.25
T_3	1.72	2.19	2.48	2.52	2.23	2.05	2.61	2.96	3.00	2.65	1.47	1.81	2.25	2.29	1.96	1.75	2.16	2.68	2.73	2.33
T_4	1.77	2.28	2.51	2.54	2.27	2.11	2.71	2.98	3.02	2.71	1.49	1.85	2.27	2.31	1.98	1.78	2.20	2.70	2.75	2.36
T_5	1.77	2.29	2.52	2.56	2.28	2.11	2.72	3.00	3.05	2.72	1.52	1.89	2.29	2.35	2.01	1.81	2.25	2.73	2.80	2.40
T_6	1.83	2.34	2.52	2.58	2.31	2.18	2.78	3.00	3.07	2.76	1.54	1.91	2.31	2.39	2.04	1.83	2.27	2.75	2.85	2.43
T_7	1.83	2.35	2.56	2.61	2.34	2.18	2.80	3.05	3.11	2.78	1.56	1.95	2.35	2.41	2.07	1.86	2.32	2.80	2.87	2.46
T_8	1.88	2.40	2.59	2.66	2.38	2.24	2.86	3.08	3.17	2.84	1.59	1.97	2.39	2.45	2.10	1.89	2.35	2.85	2.92	2.50
T_9	1.88	2.43	2.60	2.70	2.40	2.24	2.90	3.10	3.22	2.86	1.62	1.99	2.41	2.47	2.12	1.93	2.37	2.87	2.94	2.53
T_{10}	1.93	2.48	2.61	2.72	2.44	2.30	2.96	3.11	3.24	2.90	1.64	2.15	2.45	2.51	2.19	1.95	2.56	2.92	2.99	2.60
Mean	1.76	2.29	2.52	2.58		2.09	2.73	3.00	3.07		1.53	1.88	2.31	2.36		1.82	2.24	2.75	2.81	
	S.E.m ± CD @ 5%		5%	S.E.	m ±		CD @ 5	5%	S.E.	m ±		CD @ 5	5% S.E.m ±				CD @ :	5%		
S	0.0)09		0.029)	0.	01		0.04		0.	09		0.30		0.	10		0.36	
Т	0.0	001		0.004	1	0.	00		0.00		0.	00		0.01		0.	00		0.01	
S x T	0.0)09		0.025	5	0.	01		0.03		0.	09		0.25		0.	10		0.29	

 T_1 : FYM (10 kg) + recommended NPK (50:25:75 g plant⁻¹)

T₂: Vermicompost (10 kg) + recommended NPK

T₃: FYM (5 kg) + vermicompost (5 kg) + recommended NPK

 $T_4{:}\ FYM\ (10\ kg) + vermicompost\ (10\ kg) + 50\%\ recommended\ NPK$

S₂- 3 x 3 m

T₅: Azotobacter (20 g) + FYM (10 kg) + 50% recommended NPK

S₁- 2 x 2 m

T₆: Azotobacter (20 g) + vermicompost (10 kg) + 50% recommended NPK

 T_7 : PSB (20 g) + FYM (10 kg) + 50% recommended NPK

 T_8 : PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

T₉: Azotobacter (20 g) + PSB (20 g) + FYM (10 kg) + 50% recommended NPK

T₁₀: Azotobacter (20 g) + PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

S₃- 6 x 3 m S₄- 6 x 6 m

_

Int. J. Pure App. Biosci. 5 (1): 310-319 (2017)

Table 2. Influence of planting danci	ty and integrated nutrient mana	account on plant approad (L	W direction) (m) and conon	v volume (m ³) of guove ov I elit
Table 2: Influence of Dianting densi	tv and miegrated nutrient mana	igement on plant spread (r	L- w unection (inf) and canob	v volume (m) / of guava cv. Lant

									Summe	r season ((2014)									
					Plant spre	ad (E-W	/)			Canopy volume (m ³)										
Treatments		Initia	l days		Mean	After 8 months			5	Moon	Initial days				Mean	After 8 months			Mean	
	S_1	\mathbf{S}_2	S ₃	\mathbf{S}_4	Wiedii	S_1	S_2	S ₃	\mathbf{S}_4	Wiedh	S_1	S_2	S ₃	\mathbf{S}_4	Wiedii	S_1	S_2	S_3	S_4	Wiean
T_1	1.44	1.69	2.21	2.21	1.89	1.71	2.01	2.63	2.63	2.25	1.40	3.10	6.32	6.19	4.25	2.37	5.23	10.67	10.45	7.18
T_2	1.48	1.70	2.23	2.27	1.92	1.77	2.02	2.66	2.70	2.29	1.89	3.14	6.49	6.67	4.55	3.19	5.30	10.96	11.27	7.68
T ₃	1.52	1.75	2.25	2.31	1.96	1.81	2.08	2.68	2.75	2.33	2.02	3.70	6.78	7.00	4.87	3.41	6.24	11.45	11.82	8.23
T_4	1.55	1.79	2.27	2.35	1.99	1.85	2.13	2.70	2.80	2.37	2.15	4.01	6.96	7.24	5.09	3.63	6.78	11.75	12.23	8.60
T_5	1.57	1.85	2.31	2.39	2.03	1.87	2.20	2.75	2.85	2.42	2.22	4.26	7.20	7.52	5.30	3.74	7.19	12.16	12.70	8.95
T_6	1.60	1.89	2.33	2.43	2.06	1.91	2.25	2.77	2.89	2.46	2.36	4.49	7.39	7.78	5.51	3.99	7.59	12.48	13.14	9.30
T_7	1.63	1.93	2.35	2.45	2.09	1.94	2.30	2.80	2.92	2.49	2.44	4.71	7.67	8.04	5.71	4.12	7.95	12.96	13.58	9.65
T_8	1.66	1.95	2.37	2.47	2.11	1.97	2.32	2.82	2.94	2.51	2.59	4.91	8.03	8.34	5.97	4.37	8.29	13.56	14.09	10.08
T ₉	1.67	1.99	2.41	2.49	2.14	1.98	2.37	2.87	2.97	2.55	2.65	5.13	8.36	8.51	6.16	4.48	8.66	14.12	14.37	10.41
T_{10}	1.69	2.09	2.43	2.51	2.18	2.01	2.49	2.89	2.99	2.60	2.79	5.94	8.63	8.75	6.53	4.71	10.04	14.58	14.78	11.03
Mean	1.58	1.86	2.32	2.39		1.88	2.22	2.76	2.84		2.25	4.34	7.38	7.60		3.80	7.33	12.47	12.84	
	S.E.	.m±		CD @ 5	5%	S.E.	m±		CD @ 5	%	S.E.	m ±		CD @ 5	5% S.E.m ±				CD @ 59	%
S	0.	08		0.28		0.	10		0.34		0.5	55		1.90		0.	.93		3.21	
Т	0.	01		0.01		0.	01		0.02		0.0)6		0.16		0.	.10		0.27	
S x T	0.	08		0.23		0.	10		0.28		0.5	56		1.58		0.	.95		2.67	

 T_1 : FYM (10 kg) + recommended NPK (50:25:75 g plant⁻¹)

T₂: Vermicompost (10 kg) + recommended NPK

T₃: FYM (5 kg) + vermicompost (5 kg) + recommended NPK

T₄: FYM (10 kg) + vermicompost (10 kg) + 50% recommended NPK

T₅: Azotobacter (20 g) + FYM (10 kg) + 50% recommended NPK

 $S_{1}\text{-} 2 \text{ x } 2 \text{ m} \qquad \qquad S_{2}\text{-} 3 \text{ x } 3 \text{ m}$

T₆: *Azotobacter* (20 g) + vermicompost (10 kg) + 50% recommended NPK

T₇: PSB (20 g) + FYM (10 kg) + 50% recommended NPK

S₃- 6 x 3 m

T₈: PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

T₉: Azotobacter (20 g) + PSB (20 g) + FYM (10 kg) + 50% recommended NPK

T₁₀: Azotobacter (20 g) + PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

S₄- 6 x 6 m

					Prantea Si	(- gaara e								
	Summer season (2014)														
			Leaf area	(m^2)			1	Fotal chlor	rophyll	Weight of pruned shoots (kg)					
Treatments	\mathbf{S}_1	S_2	S_3	S_4	Mean	\mathbf{S}_1	S_2	S_3	\mathbf{S}_4	Mean	\mathbf{S}_1	S_2	S_3	Mean	
T_1	36.84	36.85	36.29	36.66	36.66	1.82	1.79	1.77	1.55	1.73	2.19	1.30	1.02	1.13	
T_2	37.02	37.75	37.43	37.89	37.52	1.85	1.82	1.77	1.58	1.76	2.30	2.05	1.05	1.35	
T_3	37.11	38.08	39.25	38.51	38.24	1.95	1.92	1.89	1.69	1.86	3.48	2.74	1.30	1.88	
T_4	39.42	39.66	39.84	39.57	39.62	2.00	1.98	1.92	1.70	1.90	3.55	2.13	1.41	1.77	
T_5	40.75	40.73	40.41	40.10	40.50	2.25	2.20	2.16	1.91	2.13	3.76	1.94	1.52	1.80	
T_6	42.28	41.59	40.42	41.78	41.52	2.34	2.35	2.20	2.01	2.22	3.91	2.56	1.57	2.01	
T_7	44.04	43.53	41.27	43.00	42.96	2.44	2.41	2.34	2.09	2.32	6.47	4.12	1.63	3.06	
T_8	48.59	45.02	42.87	43.45	44.98	2.45	2.44	2.37	2.12	2.35	6.86	4.64	2.07	3.39	
T ₉	50.95	50.33	44.93	44.13	47.59	2.48	2.52	2.43	2.18	2.40	7.10	5.17	2.38	3.66	
T_{10}	55.44	54.21	45.62	44.45	49.93	2.69	2.67	2.54	2.29	2.55	8.98	6.82	2.40	4.55	
Mean	43.24	42.78	40.83	40.96		2.23	2.21	2.14	1.91		4.86	3.35	1.64		
	S.E	.m±		CD @ 59	6	S.E	.m±		CD @ 5	%	S.E	.m±	СГ)@5%	
S	0.	47		1.61		0.0	006		0.02		0.	05		0.17	
Т	0.	26		0.74		0.0	0.008 0.02					04		0.13	
S x T	0.	68		1.92		0.0	015		0.04		0.10			0.28	

Table 3: Influence of planting density and integrated nutrient management on leaf area (m²) and total chlorophyll content of leaf (mg 100 g⁻¹ fresh weight) and weight of pruned shoots (kg) of guava cy. Lalit

 T_1 : FYM (10 kg) + recommended NPK (50:25:75 g plant⁻¹)

T₂: Vermicompost (10 kg) + recommended NPK

T₃: FYM (5 kg) + vermicompost (5 kg) + recommended NPK

 T_4 : FYM (10 kg) + vermicompost (10 kg) + 50% recommended NPK

T₅: Azotobacter (20 g) + FYM (10 kg) + 50% recommended NPK

 $S_1 - 2 \times 2 m$ S₂- 3 x 3 m T₆: Azotobacter (20 g) + vermicompost (10 kg) + 50% recommended NPK

 T_7 : PSB (20 g) + FYM (10 kg) + 50% recommended NPK

 T_8 : PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

T₉: Azotobacter (20 g) + PSB (20 g) + FYM (10 kg) + 50% recommended NPK

T₁₀: Azotobacter (20 g) + PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK S₃- 6 x 3 m

S₄- 6 x 6 m

Int. J. Pure App. Biosci. 5 (1): 310-319 (2017)

	1 4 1 4 14		1 00 1	e • 4 • 11 /1 4 -	h <u>10 % * 11/41</u> *	
Table 4: Influence of n	planting density and in	tegrated nutrient manage	ment on number of fruits	, frillf vield (kg free)	-) and frillf vield (f ha	⁻) of guava cv. Lalif
rusie ii iiiiiueiiee oi p	functing achieve and m	legi alea mati ient manage	ment on maniper of mane	, in and prona (ing thee) und it all jiera (t ma) of Suara cri Danie

						Su	mmer (20	14)							
			Fru	it yield (kg	tree ⁻¹)		Fruit yield per hectare (t ha ⁻¹)								
Treatments	\mathbf{S}_1	S_2	S_3	\mathbf{S}_4	Mean	\mathbf{S}_1	S_2	S_3	\mathbf{S}_4	Mean	\mathbf{S}_1	S_2	S_3	S_4	Mean
\mathbf{T}_1	90.24	79.62	71.13	58.39	74.85	2.33	2.71	4.00	4.08	3.28	5.83	3.01	2.22	1.13	3.05
T_2	100.86	105.10	79.62	77.50	90.77	3.46	3.50	4.75	5.31	4.25	8.65	3.89	2.64	1.47	4.16
T_3	118.90	100.86	92.36	100.86	103.25	3.45	4.31	5.68	7.16	5.15	8.63	4.79	3.15	1.98	4.64
T_4	132.71	126.34	100.86	105.10	116.25	4.50	4.86	6.81	7.95	6.03	11.24	5.40	3.78	2.20	5.66
T_5	149.69	170.93	110.41	147.57	144.65	5.50	6.15	7.48	11.23	7.59	13.74	6.83	4.15	3.11	6.96
T_6	151.82	185.79	132.71	153.94	156.06	5.61	6.90	9.39	12.10	8.50	14.01	7.67	5.21	3.35	7.56
T_7	149.69	198.53	160.31	162.43	167.74	5.64	7.41	11.98	13.14	9.54	14.10	8.23	6.65	3.64	8.16
T_8	198.53	207.02	192.16	170.93	192.16	7.23	7.78	12.86	14.06	10.48	18.07	8.64	7.14	3.90	9.44
T_9	226.13	236.75	170.93	185.79	204.90	8.74	8.16	13.89	15.68	11.62	21.85	9.07	7.71	4.34	10.74
T_{10}	246.30	251.61	209.15	207.02	228.52	10.85	9.92	15.65	17.34	13.44	27.12	11.02	8.68	4.80	12.91
Mean	131.96	136.95	156.49	166.25		5.73	6.17	9.25	10.81		14.33	6.86	5.13	2.99	
	S.E	.m±		CD @ 5 %		S.E.	.m±		CD @ 5 %)	S.E.	.m±		CD @ 5 %	
S	1.	30		4.49		0.1	16		0.57		0.3	33		1.15	
Т	2.	11		5.96		0.12 0.33					0.13 0.35				
S x T	4.	21		11.88		0.2	28		0.78		0.4	41		1.15	

 T_1 : FYM (10 kg) + recommended NPK (50:25:75 g plant⁻¹)

T₂: Vermicompost (10 kg) + recommended NPK

T₃: FYM (5 kg) + vermicompost (5 kg) + recommended NPK

 T_4 : FYM (10 kg) + vermicompost (10 kg) + 50% recommended NPK

 T_5 : Azotobacter (20 g) + FYM (10 kg) + 50% recommended NPK

S₁- 2 x 2 m S₂- 3 x 3 m T₆: Azotobacter (20 g) + vermicompost (10 kg) + 50% recommended NPK

 T_7 : PSB (20 g) + FYM (10 kg) + 50% recommended NPK

 T_8 : PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

 T_9 : Azotobacter (20 g) + PSB (20 g) + FYM (10 kg) + 50% recommended NPK

T₁₀: Azotobacter (20 g) + PSB (20 g) + vermicompost (10 kg) + 50% recommended NPK

S₄- 6 x 6 m

S₃- 6 x 3 m

CONCLUSION Thus application of organic manures and biofertilizers resulted in an overall significant increase in N, P and K nutrients in plants at lesser cost but longer in durability. The combined use of organic manures, biofertilizers and chemical fertilizers has been found not only in maintaining higher productivity but also in providing stable crop yields for sustainable crop production through integrated nutrient use.

REFERENCES

- Singh, U.R., Pandey, J.C., Upadhyay, N.P. and Tripathi, B.M., Description of some guava varieties (*P. guajava* L.). *Haryana J. Hortl. Sci.*, 5(3-4): 142-149 (1976).
- Anonymous, Indian Horticulture Database. National Horticulture Board, February, pp 4, 5 and 81 (2014).
- Roose, M.L., Coel, D.A., Atkin, D. and Kuper, R.S., Yield and tree size of four citrus cultivars on 21 rootstocks in California. *J. Amer. Soc. Hort. Sci.*, 114: 135-140 (1986).
- Bal, J.S. and Dhaliwal, G.S., High density planting studies in guava. *Haryana J. Hort. Sci.*, **32(1&2):** 19-20 (2003).
- Kundu, S., Effect of high density planting on growth, flowering and fruiting of guava (*Psidium guajava* L.). Acta Hort., **735**: 267 – 270 (2007).
- Singh, G., Singh, A.K. and Mishra, D., High density planting in guava. Acta Hort., 735: 235-241 (2007).
- Lal, S., Tiwari, J.P. and Mahajan, A.R., Studies on planting systems in guava (*Psidium guajava* L.) cv. Sardar. *Acta Hort.*, 735: 263-266 (2007).
- Brar, J.S., Influence of paclobutrazol and ethephon on vegetative growth of guava (*Psidium guajava* L.) plants at different spacing. *Not. Sci. Biol.*, 2(3): 110-113 (2010).
- Karibasappa, M., Uppar, D.S., Chetti, M.B. and Hiremath, S.M., Influence of mother plant nutrition on biochemical traits and seed quality attributes in Okra (*Abelmoschus esculantus* [L.] Moench)

genotypes. *Karnataka J. Agri. Sci.*, **20**: 249-251 (2007).

- Barani, P. and Anburani, A., Influence of vermicompost on growth parameters in bhendi. *South Indian Hort.*, **52:** 351-354 (2004).
- Pathak R.K. and Ram, R.A., Integration of organic farming practices for sustainable of guava. *In: 1st international Guava Symposium*, 5-8 Dec., CISH, Lucknow, India, pp. 144-145 (2005).
- Shukla, A.K., Sarolia, D.K., Bhavana Kumari, R.A., Kaushik, R.A., Mahawer, L.N. and Bairwa., Evaluation of substrate dynamics for integrated nutrient management under high density planting of guava cv. Sardar. *Indian J. Hort.*, 66(4): 461-464 (2009).
- Schnitzer, M., Soil organic matter for the next 75 years. Soil Sci., 151: 41- 59 (1991).
- Hari Baksh, Yadav, R. and Dwivedi, R., Effect of INM on growth, yield attributing characters and quality of guava (*P. guajava*) cv. Sardar. *Prog. Agric.*, 8(2): 141-144 (2008).
- Peng, Y.H. AND Qin, X.N., Effect of N, K and Ca on growth and photosynthetic and physiological of citrus seedling. *J. Fruit Sci.*, **10**: 6-10 (1993).
- 16. Akash Sharma, Wali, V.K., Bakshi, P. and Jasrotia, A., Effect of organic and inorganic fertilizers on quality and shelf life of guava (*Psidium guajava* L.) cv. Sardar. *The Bioscan*, 8(4): 1247-1250 (2013).
- Dey, P., Mathura Rai, Kumar, S., Vishal Nath, Bikas Das and Reddy, N.N., Effect of bio-fertilizers on physico-chemical characteristics of guava (*Psidium guajava*) fruit. *Indian J. Agril. Sci.*, **75:** 95-96 (2005).
- Kumar, P., Tiwari, J.P. and Lal, S., Effect of varying levels of N, P and K fertilization on plant growth, yield, fruit quality and leaf nutrient status of guava (*Psidium guajava* L.) cv. 'Pant Prabhat'. *1st International Guava Symposium*. Dec. 5-8, CISH, Lucknow pp. 80 (2005).

Copyright © February, 2017; IJPAB

- Athani, S.I., Ustad, A.I., Prabhuraj, H.S., Swamy, G.S.K., Patil, P.B. and Kotikal, Y.K., Influence of vermicompost on growth, fruit yield and quality of guava cv. Sardar. *Acta Hort.*, **735**: 381-385 (2007).
- Dwivedi, D.H., Lata, R. and Ram, R.B., Effect of bio-fertilizer and organic manures on yield and quality of guava cv. Red Fleshed. *The scientific Temper*, 1: 193-198 (2010).
- Mishra, H.K. and Pathak, R.A., Effect of shoot pruning on crop regulation in guava (*Psidium guajava* L.) cv. 'Sardar'. *Prog. Hort.*, **30:** 78-81 (1998).
- 22. Nambiar, K.K.M., Soil fertility and crop productivity under long-term fertilizer use in India. ICAR, New Delhi (1994).
- 23. Prabu, T., Narwadkar, P.R., Sajindranath, A.K. and Rathod, N.G., Integrated nutrient management in coriander. *South Indian Hort.*, **50:** 680-684 (2002).